Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T19:53:40.925Z Has data issue: false hasContentIssue false

Validation of resonance Raman spectroscopy-measured skin carotenoid status as a biomarker for fruit and vegetable intake in Korean adults

Published online by Cambridge University Press:  15 May 2023

Seoeun Ahn
Affiliation:
Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
Sungmo Ahn
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Hyeongseok Jang
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Kunsun Eom
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Yoon Jae Kim
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Jeong-Eun Hwang
Affiliation:
Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Ji In Chung
Affiliation:
Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
Jin-Young Park*
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Sunghyun Nam*
Affiliation:
Advanced Sensor Lab, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., Suwon 16678, Republic of Korea
Yoon-Ho Choi*
Affiliation:
Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
Hyojee Joung*
Affiliation:
Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
*
*Corresponding authors: Jin-Young Park, email jya.park@samsung.com; Sunghyun Nam, email sh303.nam@samsung.com; Yoon-Ho Choi, email yh38.choi@samsung.com; Hyojee Joung, email hjjoung@snu.ac.kr
*Corresponding authors: Jin-Young Park, email jya.park@samsung.com; Sunghyun Nam, email sh303.nam@samsung.com; Yoon-Ho Choi, email yh38.choi@samsung.com; Hyojee Joung, email hjjoung@snu.ac.kr
*Corresponding authors: Jin-Young Park, email jya.park@samsung.com; Sunghyun Nam, email sh303.nam@samsung.com; Yoon-Ho Choi, email yh38.choi@samsung.com; Hyojee Joung, email hjjoung@snu.ac.kr
*Corresponding authors: Jin-Young Park, email jya.park@samsung.com; Sunghyun Nam, email sh303.nam@samsung.com; Yoon-Ho Choi, email yh38.choi@samsung.com; Hyojee Joung, email hjjoung@snu.ac.kr

Abstract

Blood carotenoid concentration measurement is considered the gold standard for fruit and vegetable (F&V) intake estimation; however, this method is invasive and expensive. Recently, skin carotenoid status (SCS) measured by optical sensors has been evaluated as a promising parameter for F&V intake estimation. In this cross-sectional study, we aimed to validate the utility of resonance Raman spectroscopy (RRS)-assessed SCS as a biomarker of F&V intake in Korean adults. We used data from 108 participants aged 20–69 years who completed SCS measurements, blood collection and 3-d dietary recordings. Serum carotenoid concentrations were quantified using HPLC, and dietary carotenoid and F&V intakes were estimated via 3-d dietary records using a carotenoid database for common Korean foods. The correlations of the SCS with serum carotenoid concentrations, dietary carotenoid intake and F&V intake were examined to assess SCS validity. SCS was positively correlated with total serum carotenoid concentration (r = 0·52, 95 % CI = 0·36, 0·64, P < 0·001), serum β-carotene concentration (r = 0·60, 95 % CI = 0·47, 0·71, P < 0·001), total carotenoid intake (r = 0·20, 95 % CI = 0·01, 0·37, P = 0·04), β-carotene intake (r = 0·30, 95 % CI = 0·11, 0·46, P = 0·002) and F&V intake (r = 0·40, 95 % CI = 0·23, 0·55, P < 0·001). These results suggest that SCS can be a valid biomarker of F&V intake in Korean adults.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Zurbau, A, Au-Yeung, F, Blanco Mejia, S, et al. (2020) Relation of different fruit and vegetable sources with incident cardiovascular outcomes: a systematic review and meta-analysis of prospective cohort studies. J Am Heart Assoc 9, e017728.CrossRefGoogle ScholarPubMed
Farvid, MS, Barnett, JB & Spence, ND (2021) Fruit and vegetable consumption and incident breast cancer: a systematic review and meta-analysis of prospective studies. Br J Cancer 125, 284298.CrossRefGoogle ScholarPubMed
Guo, XF, Shao, XF, Li, JM, et al. (2019) Fruit and vegetable intake and liver cancer risk: a meta-analysis of prospective cohort studies. Food Funct 10, 44784485.CrossRefGoogle Scholar
Halvorsen, RE, Elvestad, M, Molin, M, et al. (2021) Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr Prev Health 4, 519531.CrossRefGoogle ScholarPubMed
Wang, DD, Li, Y, Bhupathiraju, SN, et al. (2021) Fruit and vegetable intake and mortality: results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 143, 16421654.CrossRefGoogle Scholar
Kalmpourtzidou, A, Eilander, A & Talsma, EF (2020) Global vegetable intake and supply compared to recommendations: a systematic review. Nutrients 12, 1558.CrossRefGoogle ScholarPubMed
Institute for Health Metrics and Evaluation & Global Burden of Disease (2021) Number of Deaths by Risk Factors, World, 2019: Our World in Data. https://ourworldindata.org/grapher/number-of-deaths-by-risk-factor (accessed July 2022).Google Scholar
Willett, W (2012) Nutritional Epidemiology, 2nd ed. New York: Oxford university press.CrossRefGoogle Scholar
Rodriguez-Concepcion, M, Avalos, J, Bonet, ML, et al. (2018) A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70, 6293.CrossRefGoogle ScholarPubMed
Noviendri, D, Hasrini, RF & Octavianti, F (2011) Carotenoids: sources, medicinal properties and their application in food and nutraceutical industry. J Med Plant Res 5, 71197131.Google Scholar
Stahl, W & Sies, H (2003) Antioxidant activity of carotenoids. Mol Aspects Med 24, 345351.CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press (US).Google Scholar
Ermakov, IV & Gellermann, W (2015) Optical detection methods for carotenoids in human skin. Arch Biochem Biophys 572, 101111.CrossRefGoogle ScholarPubMed
Mayne, ST, Cartmel, B, Scarmo, S, et al. (2010) Noninvasive assessment of dermal carotenoids as a biomarker of fruit and vegetable intake. Am J Clin Nutr 92, 794800.CrossRefGoogle ScholarPubMed
Jilcott Pitts, SB, Moran, NE, Wu, Q, et al. (2022) Pressure-mediated reflection spectroscopy criterion validity as a biomarker of fruit and vegetable intake: a 2-site cross-sectional study of 4 racial or ethnic groups. J Nutr 152, 107116.CrossRefGoogle ScholarPubMed
Jung, B, Darvin, ME, Jung, S, et al. (2020) Kinetics of the carotenoid concentration degradation of smoothies and their influence on the antioxidant status of the human skin in vivo during 8 weeks of daily consumption. Nutr Res 81, 3846.CrossRefGoogle ScholarPubMed
Matsumoto, M, Suganuma, H, Shimizu, S, et al. (2020) Skin carotenoid level as an alternative marker of serum total carotenoid concentration and vegetable intake correlates with biomarkers of circulatory diseases and metabolic syndrome. Nutrients 12, 1825.CrossRefGoogle ScholarPubMed
Jilcott Pitts, SB, Jahns, L, Wu, Q, et al. (2018) A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr 21, 16641670.CrossRefGoogle Scholar
Na, R, Stender, IM, Henriksen, M, et al. (2001) Autofluorescence of human skin is age-related after correction for skin pigmentation and redness. J Invest Dermatol 116, 536540.CrossRefGoogle ScholarPubMed
Kim, S-A, Jun, S & Joung, H (2016) Estimated dietary intake of vitamin A in Korean adults: based on the Korea National Health and Nutrition Examination Survey 2007–2012. J Nutr Health 49, 258268.CrossRefGoogle Scholar
Faul, F, Erdfelder, E, Buchner, A, et al. (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41, 11491160.CrossRefGoogle ScholarPubMed
Korean Society for the Study of Obesity (2022) Quick Reference Guideline. http://general.kosso.or.kr/html/?pmode=BBBS0001300003&page=1&smode=view&seq=1375&searchValue=&searchTitle=strTitle (assessed July 2022).Google Scholar
Toh, DWK, Loh, WW, Sutanto, CN, et al. (2021) Skin carotenoid status and plasma carotenoids: biomarkers of dietary carotenoids, fruits and vegetables for middle-aged and older Singaporean adults. Br J Nutr 126, 13981407.CrossRefGoogle ScholarPubMed
Jahns, L, Johnson, LK, Conrad, Z, et al. (2019) Concurrent validity of skin carotenoid status as a concentration biomarker of vegetable and fruit intake compared to multiple 24-h recalls and plasma carotenoid concentrations across one year: a cohort study. Nutr J 18, 78.CrossRefGoogle ScholarPubMed
Morgan, EH, Graham, ML, Marshall, GA, et al. (2019) Serum carotenoids are strongly associated with dermal carotenoids but not self-reported fruit and vegetable intake among overweight and obese women. Int J Behav Nutr Phys Act 16, 104.CrossRefGoogle Scholar
Beccarelli, LM, Scherr, RE, Dharmar, M, et al. (2017) Using skin carotenoids to assess dietary changes in students after 1 academic year of participating in the shaping healthy choices program. J Nutr Educ Behav 49, 7378.e71.CrossRefGoogle Scholar
Janse van Rensburg, A & Wenhold, F (2016) Validity and reliability of field resonance raman spectroscopy for assessing carotenoid status. J Nutr Sci Vitaminol 62, 317321.CrossRefGoogle ScholarPubMed
Nguyen, LM, Scherr, RE, Linnell, JD, et al. (2015) Evaluating the relationship between plasma and skin carotenoids and reported dietary intake in elementary school children to assess fruit and vegetable intake. Arch Biochem Biophys 572, 7380.CrossRefGoogle ScholarPubMed
Bernstein, PS, Sharifzadeh, M, Liu, A, et al. (2013) Blue-light reflectance imaging of macular pigment in infants and children. Invest Ophthalmol Vis Sci 54, 40344040.CrossRefGoogle ScholarPubMed
Keller, JE, Taylor, MK, Smith, AN, et al. (2022) Correlation of skin carotenoid content with 3-day dietary intake in community dwelling older adults. J Food Compost Anal 105, 104243.CrossRefGoogle ScholarPubMed
Fultz, AK, Rex, SM, Mazelin, A, et al. (2022) Examining fruit and vegetable intake in low-income older adults using the Veggie Meter®. Nutr Health 28, 1317.CrossRefGoogle ScholarPubMed
Hill, CM, Paschall, MJ, O’Brien, DM, et al. (2021) Characterizing vegetable and fruit intake in a remote Alaska native community using reflection spectroscopy and 24-hour recalls. J Nutr Educ Behav 53, 712718.CrossRefGoogle Scholar
Nagao-Sato, S, Baltaci, A, Peralta Reyes, AO, et al. (2021) Skin carotenoid scores assessed with reflection spectroscopy are associated with self-reported fruit and vegetable intake among latino early adolescents. J Acad Nutr Diet 121, 15071514.CrossRefGoogle ScholarPubMed
Ashton, LM, Pezdirc, KB, Hutchesson, MJ, et al. (2017) Is skin coloration measured by reflectance spectroscopy related to intake of nutrient-dense foods? A cross-sectional evaluation in Australian young adults. Nutrients 10, 11.CrossRefGoogle Scholar
Hayashi, H, Sato, I & Suganuma, H (2020) Cutaneous carotenoid level measured by multiple spatially resolved reflection spectroscopy sensors correlates with vegetable intake and is increased by continual intake of vegetable juice. Disease 9, 4.CrossRefGoogle ScholarPubMed
Jilcott Pitts, SB, Johnson, NS, Wu, Q, et al. (2022) A meta-analysis of studies examining associations between resonance Raman spectroscopy-assessed skin carotenoids and plasma carotenoids among adults and children. Nutr Rev 80, 230241.CrossRefGoogle ScholarPubMed
Scarmo, S, Henebery, K, Peracchio, H, et al. (2012) Skin carotenoid status measured by resonance Raman spectroscopy as a biomarker of fruit and vegetable intake in preschool children. Eur J Clin Nutr 66, 555560.CrossRefGoogle ScholarPubMed
Rush, E, Amoah, I, Diep, T, et al. (2020) Determinants and suitability of carotenoid reflection score as a measure of carotenoid status. Nutrients 12, 113.CrossRefGoogle ScholarPubMed
Meinke, M, Lauer, A, Taskoparan, B, et al. (2011) Influence on the carotenoid levels of skin arising from age, gender, body mass index in smoking/non-smoking individuals. Free Radic Res 1, 1520.Google Scholar
Perrone, A, Pintaudi, AM, Traina, A, et al. (2016) Raman spectroscopic measurements of dermal carotenoids in breast cancer operated patients provide evidence for the positive impact of a dietary regimen rich in fruit and vegetables on body oxidative stress and BC prognostic anthropometric parameters: a five-year study. Oxid Med Cell Longev 2016, 2727403.CrossRefGoogle Scholar
Mayne, ST, Cartmel, B, Scarmo, S, et al. (2013) Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies. Arch Biochem Biophys 539, 163170.CrossRefGoogle ScholarPubMed
Andersen, LF, Jacobs, DR Jr, Gross, MD, et al. (2006) Longitudinal associations between body mass index and serum carotenoids: the CARDIA study. Br J Nutr 95, 358365.CrossRefGoogle ScholarPubMed
Sikaris, KA (2004) The clinical biochemistry of obesity. Clin Biochem Rev 25, 165181.Google ScholarPubMed
Fonseca-Alaniz, MH, Takada, J, Alonso-Vale, MI, et al. (2007) Adipose tissue as an endocrine organ: from theory to practice. J Pediatr 83, S192203.CrossRefGoogle ScholarPubMed
Ermakov, IV, Ermakova, M, Sharifzadeh, M, et al. (2018) Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch Biochem Biophys 646, 4654.CrossRefGoogle ScholarPubMed
Ermakov, IV, Sharifzadeh, M, Ermakova, M, et al. (2005) Resonance Raman detection of carotenoid antioxidants in living human tissue. J Biomed Opt 10, 064028.CrossRefGoogle ScholarPubMed
Marhuenda-Muñoz, M, Hurtado-Barroso, S, Tresserra-Rimbau, A, et al. (2019) A review of factors that affect carotenoid concentrations in human plasma: differences between Mediterranean and Northern diets. Eur J Clin Nutr 72, 1825.CrossRefGoogle ScholarPubMed
Csiszar, A, Podlutsky, A, Wolin, MS, et al. (2009) Oxidative stress and accelerated vascular aging: implications for cigarette smoking. Front Biosci 14, 31283144.CrossRefGoogle ScholarPubMed
Zima, T, Fialová, L, Mestek, O, et al. (2001) Oxidative stress, metabolism of ethanol and alcohol-related diseases. J Biomed Sci 8, 5970.CrossRefGoogle ScholarPubMed
Lecomte, E, Herbeth, B, Pirollet, P, et al. (1994) Effect of alcohol consumption on blood antioxidant nutrients and oxidative stress indicators. Am J Clin Nutr 60, 255261.CrossRefGoogle ScholarPubMed
Aguilar, SS, Wengreen, HJ, Lefevre, M, et al. (2014) Skin carotenoids: a biomarker of fruit and vegetable intake in children. J Acad Nutr Diet 114, 11741180.CrossRefGoogle ScholarPubMed
Martinelli, S, Acciai, F, Tasevska, N, et al. (2021) Using the veggie meter in elementary schools to objectively measure fruit and vegetable intake: a pilot study. Methods Protoc 4, 33.CrossRefGoogle ScholarPubMed