Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-01T06:35:17.361Z Has data issue: false hasContentIssue false

Spatial discretization effects in spanwise forcing for turbulent drag reduction

Published online by Cambridge University Press:  01 March 2024

Emanuele Gallorini
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
Maurizio Quadrio*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milano, Italy
*
Email address for correspondence: maurizio.quadrio@polimi.it

Abstract

Wall-based spanwise forcing has been experimentally used with success by Auteri et al. (Phys. Fluids, vol. 22, 2010, 115103) to obtain large reductions of turbulent skin-friction drag and considerable energy savings in a pipe flow. The spatial distribution of the azimuthal wall velocity used in the experiment was not continuous, but piecewise constant. The present study is a numerical replica of the experiment, based on a set of direct numerical simulations (DNS); its goal is the identification of the effects of spatially discrete forcing, as opposed to the idealized sinusoidal forcing considered in the majority of numerical studies. Regardless of the discretization, with DNS the maximum drag reduction is found to be larger: the flow easily reaches complete relaminarization, whereas the experiment was capped at 33 % drag reduction. However, the key result stems from the observation that, for the piecewise-constant forcing, the apparent irregularities of the experimental data appear in the simulation data too. They derive from the rich harmonic content of the discontinuous travelling wave, which alters the drag reduction of the sinusoidal forcing. A detailed understanding of the contribution of each harmonic reveals that, whenever for example technological limitations constrain one to work far from the optimal forcing parameters, a discrete forcing may perform very differently from the corresponding ideal sinusoid, and in principle can outperform it. However, care should be exercised in comparison, as discrete and continuous forcing have different energy requirements.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auteri, F., Baron, A., Belan, M., Campanardi, G. & Quadrio, M. 2010 Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22 (11), 115103.CrossRefGoogle Scholar
Avila, M., Barkley, D. & Hof, B. 2023 Transition to turbulence in pipe flow. Annu. Rev. Fluid Mech. 55 (1), 575602.CrossRefGoogle Scholar
Banchetti, J., Luchini, P. & Quadrio, M. 2020 Turbulent drag reduction over curved walls. J. Fluid Mech. 896, 123.CrossRefGoogle Scholar
Barkley, D. 2016 Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 803, P1.CrossRefGoogle Scholar
Benard, N., Bayoda, K.D., Coma, M., Pons Prat, J., Bonnet, J.P. & Moreau, E. 2021 Turbulent skin friction reduction by spatial wall forcing oscillations with non-thermal plasma. In 55th 3AF International Conference on Applied Aerodynamics, Poitiers (France).Google Scholar
Biggi, M. 2012 Riduzione di resistenza in flussi turbolenti di parete: confronto tra esperimenti e simulazione numerica diretta. Master's thesis, Politecnico di Milano.Google Scholar
Bird, J., Santer, M. & Morrison, J.F. 2018 Experimental control of turbulent boundary layers with in-plane travelling waves. Flow Turbul. Combust. 100 (4), 10151035.Google Scholar
Cimarelli, A., Frohnapfel, B., Hasegawa, Y., De Angelis, E. & Quadrio, M. 2013 Prediction of turbulence control for arbitrary periodic spanwise wall movement. Phys. Fluids 25, 075102.Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.Google Scholar
Gallorini, E., Quadrio, M. & Gatti, D. 2022 Coherent near-wall structures and drag reduction by spanwise forcing. Phys. Rev. Fluids 7 (11), 114602.Google Scholar
Gattere, F., Zanolini, M., Gatti, D., Bernardini, M. & Quadrio, M. 2024 Turbulent drag reduction with streamwise travelling waves in the compressible regime. J. Fluid Mech. (submitted) arXiv:2312:09929.Google Scholar
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553582.Google Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Kiesow, R.O. & Plesniak, M.W. 2003 Near-wall physics of a shear-driven three-dimensional turbulent boundary layer with varying crossflow. J. Fluid Mech. 484, 139.CrossRefGoogle Scholar
Lee, M. & Moser, R. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{\tau }\approx 5200$. J. Fluid Mech. 774, 395415.Google Scholar
Lewis, H.R. & Bellan, P.M. 1990 Physical constraints on the coefficients of Fourier expansion in cylindrical coordinates. J. Math. Phys. 31 (11), 25922596.CrossRefGoogle Scholar
Liu, X., Zhu, H., Bao, Y., Zhou, D. & Han, Z. 2022 Turbulence suppression by streamwise-varying wall rotation in pipe flow. J. Fluid Mech. 951, A35.Google Scholar
Luchini, P. 2020 CPL. Available at https://CPLcode.net.Google Scholar
Luchini, P. 2021 Introducing CPL. arXiv:2012.12143.Google Scholar
Luchini, P. & Quadrio, M. 2006 A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211 (2), 551571.Google Scholar
Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., Chung, D. & Smits, A.J. 2021 An energy-efficient pathway to turbulent drag reduction. Nat. Commun. 12 (1), 5805.Google Scholar
Mishra, M. & Skote, M. 2015 Drag reduction in turbulent boundary layers with half wave wall oscillations. Math. Prob. Engng 2015, 17.Google Scholar
Nikitin, N.V. 2000 On the mechanism of turbulence suppression by spanwise surface oscillations. Fluid Dyn. 35 (2), 185190.CrossRefGoogle Scholar
Orlandi, P. & Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 4372.CrossRefGoogle Scholar
Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P. 2021 One-point statistics for turbulent pipe flow up to $Re_{\tau }\approx 6000$. J. Fluid Mech. 926, A28.Google Scholar
Quadrio, M. 2011 Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. Lond. A 369 (1940), 14281442.Google Scholar
Quadrio, M., Chiarini, A., Banchetti, J., Gatti, D., Memmolo, A. & Pirozzoli, S. 2022 Drag reduction on a transonic airfoil. J. Fluid. Mech. 942, R2.Google Scholar
Quadrio, M., Frohnapfel, B. & Hasegawa, Y. 2016 Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow? Eur. J. Mech. (B/Fluids) 55, 286293.Google Scholar
Quadrio, M. & Luchini, P. 2002 Direct numerical simulation of the turbulent flow in a pipe with annular cross-section. Eur. J. Mech. (B/Fluids) 21, 413427.Google Scholar
Quadrio, M. & Ricco, P. 2011 The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135157.CrossRefGoogle Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.Google Scholar
Quadrio, M. & Sibilla, S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.CrossRefGoogle Scholar
Rai, M.M. & Moin, P. 1991 Direct simulations of turbulent flow using finite-difference schemes. J. Comput. Phys. 96, 15.Google Scholar
Ricco, P. & Hahn, S. 2013 Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267290.CrossRefGoogle Scholar
Ricco, P., Skote, M. & Leschziner, M.A. 2021 A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog. Aerosp. Sci. 123, 100713.CrossRefGoogle Scholar
Ruby, M. & Foysi, H. 2022 Active control of compressible channel flow up to $Ma_{b} = 3$ using direct numerical simulations with spanwise velocity modulation at the walls. GAMM-Mitteilungen, 45, e202200004.CrossRefGoogle Scholar
Russo, S. & Luchini, P. 2017 A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages. J. Comput. Phys. 347, 328340.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.Google Scholar
Straub, S., Vinuesa, R., Schlatter, P., Frohnapfel, B. & Gatti, D. 2017 Turbulent duct flow controlled with spanwise wall oscillations. Flow Turbul. Combust. 99 (3), 787806.CrossRefGoogle Scholar
Wise, D.J. & Ricco, P. 2014 Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536564.Google Scholar
Yakeno, A., Hasegawa, Y. & Kasagi, N. 2014 Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109.CrossRefGoogle Scholar