Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T08:42:19.578Z Has data issue: false hasContentIssue false

Effects of wind mass-loss on the observational properties of Type Ib and Ic supernova progenitors

Published online by Cambridge University Press:  30 November 2022

Sung-Chul Yoon
Affiliation:
Department of Physics and Astronomy, Seoul National University, 08826, Seoul, South Korea email: scyoon@snu.ac.kr
Moo-Keon Jung
Affiliation:
Department of Physics and Astronomy, Seoul National University, 08826, Seoul, South Korea email: scyoon@snu.ac.kr
Harim Jin
Affiliation:
Department of Physics and Astronomy, Seoul National University, 08826, Seoul, South Korea email: scyoon@snu.ac.kr Argelander Institute for Astronomy, University of Bonn, D-53121, Bonn, Germany
Hyun-Jeong Kim
Affiliation:
Korea Astronomy and Space Science Institute, 34055, Daejeon, South Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Progenitors of Type Ib and Ic supernovae (SNe) are stripped envelope stars and provide important clues on the mass-loss history of massive stars. Direct observations of the progenitors before the supernova explosion would provide strong constraints on the exact nature of SN Ib/Ic progenitors. Given that stripped envelope massive stars can have an optically thick wind as in the case of Wolf-Rayet stars, the influence of the wind on the observational properties needs to be properly considered to correctly infer progenitor properties from pre-SN observations. Non-LTE stellar atmosphere models indicate that the optical brightness could be greatly enhanced with an optically thick wind because of lifting-up of the photosphere from the stellar surface to the wind matter, and line and free-free emissions. So far, only a limited number of SN Ib/Ic progenitor candidates have been reported, including iPTF13bvn, SN 2017ein and SN 2019yvr. We argue that these three candidates are a biased sample, being unusually bright in the optical compared to what is expected from typical SN Ib/Ic progenitors, and that mass-loss enhancement during the final evolutionary stage can explain their optical properties.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aguilera-Dena, D.R., Langer, N., Antoniadis, J., et al. 2021 arXiv:2112.06948, submitted to A&AGoogle Scholar
Cano, Z. 2013 MNRAS, 434, 1098 CrossRefGoogle Scholar
Cao, Y., Kasliwal, M.M., Arcavi, I., et al. 2013 ApJL, 775, L7 CrossRefGoogle Scholar
Dessart, L., Hillier, D.J., Li, C., & Woosley, S.E. 2012 MNRAS, 424, 2139 CrossRefGoogle Scholar
Dessart, L., Yoon, S.-C., Aguilera-Dena, D.R., & Langer, N. 2020 A&A, 642, 106 Google Scholar
Drout, M.R., Soderberg, A.M., Gal-Yam, A., et al. 2011 ApJ, 741, 97 CrossRefGoogle Scholar
Eldridge, J.J., Fraser, M., & Smartt, S., et al. 2013 MNRAS, 436, 774 CrossRefGoogle Scholar
Eldridge, J.J., & Maund, J.R. 2016 MNRAS, 461, L117 CrossRefGoogle Scholar
Farrell, E.J., Groh, J.H., Meynet, G., Eldridge, J.J. 2020 MNRAS, 494, 53 CrossRefGoogle Scholar
Folatelli, G., Van Dyk, S.D., Kuncarayakti, H., et al. 2016 ApJL, 825, L22 CrossRefGoogle Scholar
Fremling, C., Sollerman, J., Kasliwal, M.M., et al. 2018 A&A, 618, 37 Google Scholar
Fuller, J., & Ro, S. 2017 MNRAS, 476, 1853 CrossRefGoogle Scholar
Gilkis, A., & Arcavi, I. 2022 MNRAS, 511, 691 CrossRefGoogle Scholar
Gilkis, A., Vink, J., Eldridge, J.J., & Tout, C. 2019 MNRAS, 486, 4451 CrossRefGoogle Scholar
Hachinger, S., Mazzali, P.A., Taubenberger, S., et al. 2012 MNRAS, 422, 70 CrossRefGoogle Scholar
Hainich, R., Ruehiling, U., Todt, H., et al. 2014 A&A, 565, 27 Google Scholar
Hamann, W.-R., Graefener, G., & Liermann, A. 2006 A&A, 457, 1015 Google Scholar
Hamann, W.R., Graefener, G., Liermann, A., et al. 2019 A&A, 625, A57 Google Scholar
Hillier, D.J., Lanz, T., Heap, S.R., et al. 2003 ApJ, 588, 1039 CrossRefGoogle Scholar
Hillier, D.J., & Miller, D.L. 1998 ApJ, 496, 407 CrossRefGoogle Scholar
Jin, H., Yoon, S.-C., & Blinnikov, S. 2021 ApJ, 910, 68 CrossRefGoogle Scholar
Jung, M.-K. Yoon, S.-C., & Kim, H.-J. 2022 ApJ, 925, 216 CrossRefGoogle Scholar
Kilpatrick, C.D., Drout, M.R., Auchettl, K., et al. 2021 MNRAS, 504, 2073 CrossRefGoogle Scholar
Kim, H.-J., Yoon, S.-C., & Koo, B.-C. 2015 ApJ, 809, 131 CrossRefGoogle Scholar
Kilpatrick, C.D., Takaro, T., Foley, R.J., et al. 2018 MNRAS, 480, 2072 CrossRefGoogle Scholar
Langer, N. 2012 ARA&A, 50, 107 Google Scholar
Leung, S.-C., Wu., S., & Fuller, J. 2021 ApJ, 923, 41 CrossRefGoogle Scholar
Liu, Y.-Q., Modjaz, M., Biaco, F., & Graur, O. 2016 ApJ, 827, 90 CrossRefGoogle Scholar
Lyman, J.D., Bersier, D., James, P.A. 2016 MNRAS, 457, 328 CrossRefGoogle Scholar
Lucy, L.B. 1991 ApJ, 383, 308 CrossRefGoogle Scholar
Menon, A., & Heger, A. 2016 MNRAS, 469, 46 Google Scholar
Morris, Th., & Podsiadlowski, 2007 Science, 315, 1103 CrossRefGoogle Scholar
Podsiadlowski, Ph ., Joss, P.C., & Rappaport, Sl. 1990 A&A, 227, L9 Google Scholar
Prentice, S.J., Ashall, C., James, P.A., et al. 2019 MNRAS, 485, 1559 CrossRefGoogle Scholar
Sander, A., Hamann, W.R., & Todt, H. 2012 A&A, 540, 144 Google Scholar
Sander, A., Hamann, W.R., Todt, H., et al. 2019 A&A, 621, A92 Google Scholar
Sander, A., Vink, J.S., Hamann, W.-R. 2020 MNRAS, 491, 440 Google Scholar
Shahbandeh, M., Hsiao, E.Y., & Ashall, C. et al. 2021, ApJ, 925, 175 Google Scholar
Shenar, T., Gilkis, A., Vink, J.S., Sana, H., & Sander, A.A.C. 2020 A&A, 634, 79 Google Scholar
Sun, N.-C., Maund, J.R., Crowther, P.A., et al. 2022 MNRAS, 510, 3701 CrossRefGoogle Scholar
Teffs, J., Ertl, T., Mazzali, P., et al. 2020 MNRAS, 499, 730 CrossRefGoogle Scholar
Tramper, F., Straal, S., & Sanyal, D., et al. 2015, A&A, 581, A110 Google Scholar
Smartt, S. 2015, PASA, 32, e016 CrossRefGoogle Scholar
Smith, N. 2014, ARA&A, 52, 487 Google Scholar
Swartz, D. A. 1991 ApJ, 373, 604 CrossRefGoogle Scholar
Taddia, F., Sollerman, J., Ledoudas, G., et al. 2018, A&A, 609, A136 Google Scholar
Urushibata, T., Takahashi, K., Umeda, H., Yoshida, T. 2018, A&A, 609, A136 Google Scholar
Williamson, M., Kerzendorf, W., & Modjaz, M. 2021 ApJ, 908, 150 CrossRefGoogle Scholar
Van Dyk, S. D., Zheng, W, Brink, T. G., Filippenko, A. V., Milisavljevic, D, Andrews, J. E., Smith, N., Cignoni, M, Fox, O. D., Kelly, P. L., Adamo, A., Yunus, S., Zhang, K., Kumar, S., 2018, ApJ, 860, 2 CrossRefGoogle Scholar
Vink, J.S. 2017, A&A, 607, 8 Google Scholar
Vink, J.S. 2022, ARA&A, in pressGoogle Scholar
Woosley, S.E. 2019 ApJ, 878, 49 CrossRefGoogle Scholar
Yoon, S.-C. 2015, PASA, 32, e015 CrossRefGoogle Scholar
Yoon, S.-C. 2017, MNRAS, 470, 3970 CrossRefGoogle Scholar
Yoon, S.-C., Chun, W., Tostov, A., Blinnikov, S., & Dessart, L. 2019, ApJ, 872, 174 CrossRefGoogle Scholar
Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, ApJ, 840, 10 CrossRefGoogle Scholar
Yoon, S.-C., Graefener, G., Vink, J.S., Kozyreva, A., & Izzard, R.G. 2012, A&A, 544, L11 Google Scholar
Yoon, S.-C., Woosley, S.E., & Langer, N. 2010 ApJ, 725, 940 CrossRefGoogle Scholar