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1. Introduction and definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disc D = {z ∈ C : |z| < 1}. Also let S, S∗ and
K denote the subclasses of A consisting of functions which are univalent, starlike and
convex in D, respectively. Here, f ∈ A is said to be starlike (convex) if f is univalent and
if the image f(D) is starlike with respect to 0 (convex). See [3] for further information
on those classes. For analytic functions g and h in D, g is said to be subordinate to h if
there exists an analytic function ω such that ω(0) = 0, |ω(z)| < 1 and g(z) = h(ω(z))
for z ∈ D. The subordination will be denoted by g ≺ h, or, conventionally, g(z) ≺ h(z).
In particular, when h is univalent, g ≺ h if and only if g(0) = h(0) and if g(D) ⊂ h(D).

We now introduce the terminology needed below. Let M be the class of non-vanishing
analytic functions ϕ in D with the normalization condition ϕ(0) = 1. Following Ma and
Minda [9], we define the subclasses S∗(ϕ) and K(ϕ) of A as the sets of functions f ∈ A

131

https://doi.org/10.1017/S0013091504000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000306


132 Y. C. Kim and T. Sugawa

of the forms

zf ′(z)
f(z)

≺ ϕ(z)

and

1 +
zf ′′(z)
f ′(z)

≺ ϕ(z),

respectively, for each ϕ ∈ M. By definition, it is obvious that f ∈ K(ϕ) if and only if
zf ′ ∈ S∗(ϕ). We note that S∗(ϕ) ⊂ S∗(ψ) and K(ϕ) ⊂ K(ψ) for ϕ ≺ ψ.

A typical example for ϕ is given by

ϕA,B(z) =
1 + Az

1 + Bz
, (1.1)

where A and B are real numbers satisfying −1 � B < A � 1. Note that the Möbius
transformation ϕA,B maps the unit disc onto the disc (or half-plane) with diameter
((1 − A)/(1 − B), (1 + A)/(1 + B)). The corresponding classes K(ϕA,B) and S∗(ϕA,B)
have been studied by Janowski [4,5] and Silverman and Silvia [11]. We note that S∗ =
S∗(ϕ1,−1) is the class of starlike functions and K = K(ϕ1,−1) is the class of convex
functions.

In this article, we treat classes of analytic functions defined in a similar way to the
class of close-to-convex functions. For functions ϕ, ψ ∈ M, following [8], we denote by
C(ϕ, ψ) the set of all f in A such that there exists a function h ∈ K(ϕ) with

f ′

h′ ≺ ψ. (1.2)

Note that S∗(ϕ) ⊂ C(ϕ, ϕ). The class of close-to-convex functions can be included in
our framework in the following way. A function f ∈ A is called close-to-convex if there
exist a convex function h ∈ K = K(ϕ1,−1) and a real constant γ with |γ| < π/2 such
that Re(e−iγf ′/h′) > 0 holds in D. The last condition is equivalent to the subordination
f ′/h′ ≺ ψγ , where

ψγ(z) =
1 + eiγz

1 − e−iγz
.

Therefore, the class C of close-to-convex functions can be described as the union of
C(ϕ1,−1, ψγ) over −π/2 < γ < π/2. It is known that C ⊂ S (see [3]).

The pre-Schwarzian derivative Tf of a locally univalent analytic function f is defined
by

Tf (z) =
f ′′(z)
f ′(z)

.

We also define the norm of Tf by

‖Tf‖ = sup
z∈D

|Tf (z)|(1 − |z|2).
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It is known that ‖Tf‖ < ∞ if and only if f is uniformly locally univalent, namely, f is
univalent in each hyperbolic disc in D of a fixed radius. Indeed, the radius of univalence
can be estimated in terms of ‖Tf‖. We note that the set T1 of pre-Schwarzian derivatives
Tf of those functions f in S which extend to quasiconformal automorphisms of the
Riemann sphere can be regarded as a model of the universal Teichmüller space (cf. [16]),
in analogy with the Schwarzians. It is also known that ‖Tf‖ � 6 for f ∈ S and that
‖Tf‖ � 4 for f ∈ K, and, conversely, for f ∈ A, ‖Tf‖ � 1 implies f ∈ S (Becker’s
theorem).

The authors deduced various properties (distortion, growth, growth of the coefficients
and so on) of functions f ∈ A with ‖Tf‖ � 2λ for a fixed number λ > 0, and gave
norm estimates for a few classes of univalent functions in [6]. The present article is
a continuation of that work. The aim of this paper is to give (possibly sharp) norm
estimates of the pre-Schwarzian derivative for the class C(ϕ, ψ).

Theorem 1.1. Let ϕ, ψ ∈ M and suppose that ϕ is univalent and the image ϕ(D) is
starlike with respect to 1. Then the inequality

‖Tf‖ � sup
|z|<1

(1 − |z|2)
∣∣∣∣ϕ(z) − 1

z

∣∣∣∣ + sup
|z|<1

(1 − |z|2)
∣∣∣∣ψ′(z)
ψ(z)

∣∣∣∣ (1.3)

holds for every f ∈ C(ϕ, ψ). Moreover, this estimate is sharp if the inequalities∣∣∣∣ϕ(z) − 1
z

∣∣∣∣ � ϕ(ε|z|) − 1
ε|z| and

∣∣∣∣ψ′(z)
ψ(z)

∣∣∣∣ � ψ′(ε|z|)
ψ(ε|z|) (1.4)

hold simultaneously for all z ∈ D, where ε is a unimodular constant.

The estimate in the main theorem can be obtained in a straightforward way. The
sharpness, however, requires more careful observations. To this end, we introduce a sort
of maximal operator in connection with the Schwarz–Pick lemma in § 2 and deduce basic
properties of it. The authors believe that this methodology is efficient in other extremal
problems as well. In the forthcoming paper [7], the quantity supz∈D

(1−|z|2)|ψ′(z)/ψ(z)|
is investigated for a non-vanishing analytic function ψ in a more systematic way.

The proof of Theorem 1.1 will be given in § 3. We will give some applications of the
main theorem in § 4. We also provide some inclusion relations between the class C(ϕ, ψ)
and the Hardy spaces in § 5.

Finally, we mention a couple of related results. Yamashita [15] investigated the norm
of pre-Schwarzian derivatives of Gelfer-starlike, Gelfer-convex and Gelfer-close-to-convex
functions (see also [14] for Gelfer functions). Recently, Okuyama [10] gave a sharp norm
estimate for the class of β-spiral-like functions.

2. An extremal problem and the associated maximal operator

We first introduce an extremal problem and deduce fundamental properties of the
adapted maximal operator.

Let us consider the extremal problem: for a given pair of points z0, w0 with |w0| �
|z0| < 1, find the maximum of values |ω′(z0)| or, more precisely, the region of values
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ω′(z0), for holomorphic mappings ω : D → D with ω(0) = 0 and ω(z0) = w0. A complete
solution to this problem was given by Dieudonné in 1931. The following is known as
Dieudonné’s lemma (see [3, p. 198]).

Lemma 2.1 (Dieudonné). Let F be the family of analytic functions ω on the unit
disc with |ω| < 1, ω(0) = 0 and ω(z0) = w0, where z0 and w0 are points in D with
|w0| � |z0| �= 0. Then the set {ω′(z0) : ω ∈ F} is the closed disc centred at w0/z0 with
radius (|z0|2 − |w0|2)/|z0|(1 − |z0|2). Furthermore, if ω′(z0) lies on the boundary of the
disc, then ω has the form

ω(z) = z
λ((z − z0)/(1 − z̄0z)) + (w0/z0)
1 + λ(w̄0/z̄0)((z − z0)/(1 − z̄0z))

(2.1)

for a constant λ with |λ| = 1.

In particular, we obtain the sharp inequality

|ω′(z0)| �
∣∣∣∣w0

z0

∣∣∣∣ +
|z0|2 − |w0|2
|z0|(1 − |z0|2)

= K(|z0|, |w0|) (2.2)

for such a function ω with equality holding if and only if λ = w0|z0|2/|w0|z2
0 . Here K(r, s)

is given by

K(r, s) =
s

r
+

r2 − s2

r(1 − r2)
=

s(1 − r2) + r2 − s2

r(1 − r2)
(2.3)

for 0 � s � r < 1 (we set K(0, 0) = 1).
By using the function K(r, s), we define a maximal operator on the set C([0, 1)) of

continuous functions on the interval [0, 1). For F ∈ C([0, 1)), we set

F̂ (r) = max
0�s�r

K(r, s)|F (s)|, 0 � r < 1, (2.4)

and we call F̂ the maximal function of F .
Apart from the obvious subadditivity (F + G)∧ � F̂ + Ĝ, the following estimates con-

stitute basic properties of the operator F �→ F̂ .

Lemma 2.2. Let F be a continuous function on the interval [0, 1). Then

(1 − r2)|F (r)| � (1 − r2)F̂ (r) � max
0�s�r

(1 − s2)|F (s)|. (2.5)

Proof. First, by the identity

r(1 − s2) − [s(1 − r2) + r2 − s2] = (r − s)(1 − r)(1 − s),

we obtain the following estimate of the kernel K(r, s) given in (2.3):

K(r, s) � 1 − s2

1 − r2 (2.6)

for 0 � s � r < 1. Therefore, the right-hand inequality in (2.5) follows. The left-hand
one is obvious because K(r, r) = 1. �

https://doi.org/10.1017/S0013091504000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000306


Norm estimates of pre-Schwarzian derivatives 135

0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.05

1.00

r

Figure 1. Graphs of (1 − r2)F (r) (solid line) and (1 − r2)F̂ (r) (dashed line).

Remark 2.3. In view of the Schwarz–Pick lemma, |ω′(z)| � (1 − |ω(z)|2)/(1 − |z|2)
for a holomorphic function ω : D → D, the inequality (2.6) is a natural conclusion.

As an immediate consequence of the lemma, we obtain the relation

sup
0�r�r0

(1 − r2)F̂ (r) = sup
0�r�r0

(1 − r2)|F (r)| (2.7)

for any 0 � r0 < 1. In particular,

sup
0�r<1

(1 − r2)F̂ (r) = sup
0�r<1

(1 − r2)|F (r)|. (2.8)

We now assume that the supremum of (1− r2)|F (r)| is attained at r = r0 ∈ [0, 1). Then,
by Lemma 2.2, we see that F̂ (r0) = |F (r0)| and that the supremum of (1 − r2)F̂ (r) is
attained also at r = r0. It is a little surprising that (1 − r2)F̂ (r) again tends to the
same value as (1 − r2

0)F̂ (r0) when r approaches 1. Figure 1 illustrates the graphs of the
functions (1 − r2)F (r) and (1 − r2)F̂ (r) when F (r) = (1 − Ar)/(1 − Br) = ϕA,B(r) for
A = 0.7 and B = −0.3 (cf. Lemma 4.2). We now prove the above fact in the general case.

Proposition 2.4. For a continuous function F on the interval [0, 1), the maximal
function F̂ satisfies

lim
r→1−

(1 − r2)F̂ (r) = sup
0�r<1

(1 − r2)F̂ (r) = sup
0�r<1

(1 − r2)|F (r)|.

Proof. By (2.8), we obtain

lim sup
r→1−

(1 − r2)F̂ (r) � sup
0�r<1

(1 − r2)F̂ (r) = sup
0�r<1

(1 − r2)|F (r)|.

It remains to prove the opposite direction. Let M be an arbitrary number with M <

sup0�r<1(1 − r2)|F (r)|. It is enough to prove the inequality M < limr→1−(1 − r2)F̂ (r).
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By the choice of M , we can find a number r1 in [0, 1) so that M < (1 − r2
1)|F (r1)| holds.

Then, for any r ∈ (r1, 1), we have

(1 − r2)F̂ (r) = (1 − r2) max
0�s�r

K(r, s)|F (s)|

� (1 − r2)K(r, r1)|F (r1)|

> M
1 − r2

1 − r2
1
K(r, r1)

= M
r1(1 − r2) + r2 − r2

1

r(1 − r2
1)

.

We take the lower limit as r → 1− to obtain the inequality lim infr→1−(1 − r2)F̂ (r) � M .
Letting M tend to sup0�r<1(1 − r2)|F (r)|, we have

lim inf
r→1−

(1 − r2)F̂ (r) � sup
0�r<1

(1 − r2)|F (r)|.

Hence, the limit of (1 − r2)F̂ (r) exists when r tends to 1 from the left and it equals the
supremum of (1 − r2)|F (r)| over 0 � r < 1. �

As a corollary, we note the following simple fact.

Corollary 2.5. For F, G ∈ C([0, 1)),

sup
0�r<1

(1 − r2)(F̂ (r) + Ĝ(r)) = sup
0�r<1

(1 − r2)F̂ (r) + sup
0�r<1

(1 − r2)Ĝ(r).

3. Proof of the main theorem

For ϕ ∈ M, we define the functions hϕ and kϕ in A by the relations

zh′
ϕ(z)

hϕ(z)
= ϕ(z) and 1 +

zk′′
ϕ(z)

k′
ϕ(z)

= ϕ(z), (3.1)

i.e.

hϕ(z) = z exp
∫ z

0

ϕ(t) − 1
t

dt and kϕ(z) =
∫ z

0

(
exp

∫ ζ

0

ϕ(t) − 1
t

dt

)
dζ. (3.2)

For instance, we can compute hϕA,B
and kϕA,B

for −1 � B < A � 1 as follows:

hϕA,B
(z) = zk′

ϕA,B
(z) =

{
z(1 + Bz)(A−B)/B , B �= 0,

zeAz, B = 0,
(3.3)

and

kϕA,B
(z) =

⎧⎪⎨
⎪⎩

(1/A)((1 + Bz)A/B − 1), A �= 0, B �= 0,

(1/B) log(1 + Bz), A = 0,

(1/A)(eAz − 1), B = 0.

(3.4)
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Under some additional assumptions on ϕ, Ma and Minda showed [9] that these func-
tions are extremal in S∗(ϕ) and K(ϕ), respectively, in many respects. In particular, they
obtain the following lemma. In order to clarify what assumptions are necessary for ϕ, we
will also reproduce the proof of the lemma.

Lemma 3.1 (see Theorem 1 in [9]). Suppose that a function ϕ ∈ M is univalent
and ϕ(D) is starlike with respect to 1. Then f ′ ≺ k′

ϕ holds for every f ∈ K(ϕ).

Proof. Let g = c log k′
ϕ, where c = 1/ϕ′(0). Since c(ϕ − 1) ∈ A is starlike, we can see

that

1 +
zg′(z)
g′′(z)

=
zϕ′(z)

ϕ(z) − 1

has positive real part; in other words, g is convex. By assumption, the relation czf ′′/f ′ ≺
c(ϕ − 1) = czk′′

ϕ/k′
ϕ = zg′ holds. By Suffridge’s theorem [12, Theorem 3], one obtains

c log f ′ ≺ g = c log k′
ϕ, and, hence, f ′ ≺ k′

ϕ. (Recall that convexity of g was essential in
this theorem.) �

In general, for f, g ∈ A, the condition f ′ ≺ g′ implies the inequality ‖Tf‖ � ‖Tg‖
(see [6]). Hence, we obtain the following as a corollary.

Theorem 3.2. Let ϕ be as in Lemma 3.1. If f ∈ K(ϕ), then ‖Tf‖ � ‖Tkϕ‖ holds,
where kϕ is the function given in (3.2).

We now prove Theorem 1.1. It is convenient below to introduce the class B of analytic
functions ω on the unit disc with |ω(z)| � |z|. Let f ∈ C(ϕ, ψ). Then, by definition, there
is a function h ∈ K(ϕ) such that f ′/h′ ≺ ψ. By Lemma 3.1, we see that h′ ≺ k′

ϕ. Let ω1

and ω2 be analytic functions in B satisfying h′ = k′
ϕ ◦ ω1 and f ′/h′ = ψ ◦ ω2. Conversely,

for any pair of functions ω1, ω2 ∈ B, the function f is uniquely determined so that the
above relations hold. We occasionally write f = f [ω1, ω2]. By taking the logarithmic
derivative, these relations yield

Tf = Th +
(ψ′ ◦ ω2)ω′

2

ψ ◦ ω2

=
(ϕ ◦ ω1 − 1)ω′

1

ω1
+

(ψ′ ◦ ω2)ω′
2

ψ ◦ ω2

= ω′
1(Φ ◦ ω1) + ω′

2(Ψ ◦ ω2),

where we have set Φ(z) = (ϕ(z) − 1)/z and Ψ(z) = ψ′(z)/ψ(z).
For an analytic function g on D, we will denote by M̂(r, g) the maximal function of

M(r, g) = max{|g(z)| : |z| = r}.
Fix a point z0 ∈ D with r = |z0| > 0. For any pair of points w1, w2 with rj = |wj | � r,

consider functions ω1, ω2 ∈ B with ωj(z0) = wj for j = 1, 2. By (2.2), we observe that

|Tf [ω1,ω2](z0)| � K(r, r1)|Φ(w1)| + K(r, r2)|Ψ(w2)|
� K(r, r1)M(r1, Φ) + K(r, r2)M(r2, Ψ)

� M̂(r, Φ) + M̂(r, Ψ). (3.5)
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Hence, by Proposition 2.4 and its corollary,

‖Tf‖ � sup
0�r<1

(1 − r2)(M̂(r, Φ) + M̂(r, Ψ))

= sup
0�r<1

(1 − r2)M(r, Φ) + sup
0�r<1

(1 − r2)M(r, Ψ).

Thus (1.3) has been proved.
Next we demonstrate the sharpness under the additional assumption (1.4). For a given

0 � r < 1, we choose r1, r2 ∈ [0, r] so that M̂(r, Φ) = K(r, r1)M(r, Φ) and M̂(r, Ψ) =
K(r, r2)M(r, Ψ). For each j = 1, 2, let ωj be the function of the form (2.1) with w0 = εrj

and λ = ε|z0|2/z2
0 . Then equality holds at each step of the estimations in (3.5). Hence,

max
f∈C(ϕ,ψ)

M(Tf , r) = M̂(r, Φ) + M̂(r, Ψ)

holds for each r < 1. We remark that the extremal function attaining the above maximum
is uniquely determined for each r < 1. Now it is evident that the estimate (1.3) is best
possible if (1.4) is satisfied.

4. Applications to the class C(ϕA1,B1 , ϕA2,B2)

As an application of Theorem 1.1, we consider the case when ϕ = ϕA1,B1 and ψ = ϕA2,B2

for some real numbers A1, B1, A2, B2 with −1 � Aj < Bj � 1 for j = 1, 2, where ϕA,B

is the function given in (1.1).
It is convenient to have the exact value of

E(A, B) = sup
|z|<1

1 − |z|2
|1 + Az| |1 + Bz| (4.1)

for −1 � B < A � 1. To this end, we prepare the next elementary lemma.

Lemma 4.1. For real numbers A, B with −1 � B < A � 1, the inequality

|1 + Az| |1 + Bz| � (1 + εA|z|)(1 + εB|z|)

holds for every z ∈ D. Here, ε = 1 when A + B � 0 and ε = −1 when A + B � 0.

Proof. First assume that A + B � 0. If AB � 0, then A � 0 and B � 0, and, thus,
the claim is obvious. If AB < 0, the assumptions imply B < 0 < A and

min
|z|=r

|1 + Az|2 |1 + Bz|2 = min
−r�x�r

(1 + A2r2 + 2Ax)(1 + B2r2 + 2Bx)

= (1 − Ar)2(1 − Br)2.

Hence, the required inequality follows. The other case when A + B � 0 can be treated
similarly. �

We are now ready to compute the value of E(A, B).
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Lemma 4.2. If −1 � B < A � 1, then

E(A, B) =
2

1 − AB +
√

(1 − A2)(1 − B2)
. (4.2)

Proof. First we assume that A+B � 0. Then, by Lemma 4.1, we obtain the expression

E(A, B) = sup
0�r<1

g(r),

where we set

g(x) =
1 − x2

(1 − Ax)(1 − Bx)
.

A simple calculation gives E(A, B) = g(x0), where x0 is the unique zero of g′(x) in
0 � x < 1, that is,

x0 =
A + B

1 + AB +
√

(1 − A2)(1 − B2)
.

Noting the relation

(A + B)x2
0 − 2(1 + AB)x0 − (A + B) = 0,

we get (4.2). The case when A + B < 0 can be reduced to the previous one by using the
obvious relation E(A, B) = E(−B,−A). The proof is now complete. �

As an immediate consequence of this together with Theorem 3.2, we obtain the fol-
lowing theorem.

Theorem 4.3. Let −1 � B < A � 1. If f ∈ K(ϕA,B), then

‖Tf‖ � 2(A − B)
1 +

√
1 − B2

, (4.3)

and equality holds when f = kϕA,B
.

Proof. If f ∈ K(ϕA,B), by Theorem 3.2, we have

‖Tf‖ � ‖Tk‖,

where k denotes the function kϕA,B
given in (3.4). Since

k′′(z)
k′(z)

=
ϕA,B(z) − 1

z
=

A − B

1 + Bz
,

we obtain

‖Tk‖ = (A − B)E(0, B) =
2(A − B)

1 +
√

1 − B2

by Lemma 4.2. �
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Noting the expressions

ϕA,B(z) − 1
z

=
A − B

1 + Bz
and

ϕ′
A,B(z)

ϕA,B(z)
=

A − B

(1 + Az)(1 + Bz)

and using Lemma 4.1, we see that the condition (1.4) is fulfilled for ϕ = ϕA1,B1 and
ψ = ϕA2,B2 if either

B1 � 0 and A2 + B2 � 0 (with ε = 1) (4.4)

or

B1 � 0 and A2 + B2 � 0 (with ε = −1). (4.5)

Theorem 1.1 together with Lemma 4.2 now yields the following result.

Theorem 4.4. Let −1 � Bj < Aj � 1 for j = 1, 2. If f ∈ C(ϕA1,B1 , ϕA2,B2), then

‖Tf‖ � 2(A1 − B1)
1 +

√
1 − B2

1

+
2(A2 − B2)

1 − A2B2 +
√

(1 − A2
2)(1 − B2

2)
.

The inequality is sharp when B1(A2 + B2) � 0.

The second author gave the inequality

‖Tf‖ � 6k

for functions f ∈ S∗(ϕ−k,k) for 0 � k � 1 in [13, Theorem 4.3]. The following corollary
improves the above estimate.

Corollary 4.5. For 0 � k � 1, functions f ∈ S∗(ϕ−k,k) satisfy the inequality

‖Tf‖ � 4k

1 +
√

1 − k2
+ 2k.

Proof. Since S∗(ϕ−k,k) ⊂ C(ϕ−k,k, ϕ−k,k), the above inequality follows from Theo-
rem 4.4 with Aj = k, Bj = −k. �

Note that the estimate in the corollary may not be sharp, though it is sharp for the
class C(ϕ−k,k, ϕ−k,k).

5. Relationship with the Hardy space

The Hardy space Hp (0 < p � ∞) is the class of all functions f analytic in D such that

‖f‖p := lim
r→1−

Mp(r, f) < ∞,

where

Mp(r, f) =

⎧⎪⎨
⎪⎩

(
1
2π

∫ 2π

0
|f(reiθ)|p dθ

)1/p

, 0 < p < ∞,

M(r, f) = max|z|�r |f(z)|, p = ∞.
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Let BMOA be the family of functions f analytic in D with finite BMOA norm:

‖f‖∗ := sup
α∈D

‖fα‖2 + |f(0)| < ∞,

where fα(z) = f((z + α)/(1 + ᾱz)) − f(α). Note that H∞ ⊂ BMOA ⊂
⋂

0<p<∞ Hp. See
[1] and [2] for further information.

A simple relationship between the class C(ϕ, ψ) and the Hardy space Hp is given by
the following theorem.

Theorem 5.1. Let 1 � p < ∞. Suppose that ϕ ∈ M is univalent, ϕ(D) is starlike
with respect to 1 and k′

ϕ ∈ H1, where kϕ is given by (3.2). Then C(ϕ, ψ) ⊂ Hp for every
ψ ∈ M ∩ Hp.

Proof. If f ∈ C(ϕ, ψ), from (1.2) we have

f(z) =
∫ z

0
h′(t)ψ(ω(t)) dt,

where h ∈ K(ϕ) and |ω(z)| � |z|. By Littlewood’s subordination theorem [2, Theo-
rem 1.7], it follows that ψ ◦ ω ∈ Hp for ψ ∈ M ∩ Hp. By assumption, h′ ≺ k′

ϕ ∈ H1, and
hence h′ ∈ H1. This implies that h ∈ H∞ ⊂ BMOA. Now the following theorem yields
the desired result. �

Theorem 5.2 (Aleman and Siskakis [1]). Let h be an analytic function in the unit
disc and let 1 � p < ∞. The operator

f �→ 1
z

∫ z

0
f(t)h′(t) dt

maps Hp continuously into itself if and only if h ∈ BMOA.

Corollary 5.3. Let −1 � B < A � 1. If −1 < B or A � 0, then, for any number
1 � p < ∞, the relation C(ϕA,B , ψ) ⊂ Hp holds for all ψ ∈ M ∩ Hp. If B = −1 and
A > 0, then, for each 1 � p < ∞, there exists a function ψ ∈ M ∩ Hp such that the
relation C(ϕA,B , ψ) ⊂ Hp does not hold.

Proof. In view of (3.3), we can see that k′
ϕA,B

∈ H1 if and only if −1 < B or A < 0.
Thus, by Theorem 5.1, the statement holds in this case. When B = −1 and A = 0,
ϕ(z) = ϕ0,−1(z) = 1/(1−z), therefore k′

ϕ(z) = 1/(1−z). If h′ ≺ k′
ϕ, then h′ = 1/(1−ω),

where ω : D → D is analytic with ω(0) = 0. Hence,

(1 − |z|2)|h′(z)| � 1 − |z|2
1 − |ω(z)| � 1 + |z| < 2,

which implies h ∈ BMOA because a univalent Bloch function is known to belong to
BMOA. Now the theorem of Aleman and Siskakis implies the desired claim even in this
case.
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Now suppose B = −1 and A > 0. Let p0 ∈ [1,∞) be given. Choose a number C so
that

max
{

1
p0

− A, 0
}

� C <
1
p0

and set ψ(z) = (1 − z)−C . Note first that

ψ ∈
⋂

0<p<1/C

Hp ⊂ Hp0 .

Then the function f ∈ A determined by

f ′(z) = k′
ϕA,−1

(z)ψ(z) = (1 − z)−A−C−1

belongs to the class C(ϕA,−1, ψ). In view of the form

f(z) =
(1 − z)−A−C − 1

A + C

of f , we see that f does not belong to Hp for p � 1/(A + C). Since p0 � 1/(A + C) by
the choice of C, we conclude that f ∈ C(ϕA,−1, ψ) \ Hp0 . �

Remark 5.4. In general, if ψ ∈ M has positive real part, by [2, Theorem 3.2], we
have

ψ ∈
⋂

0<p<1

Hp.

We also note that
C(ϕ, ψ) ⊂ C ⊂ S ⊂

⋂
0<p<1/2

Hp

for ϕ ∈ M with Re ϕ > 0 and ψ ∈ M with Re eiγψ > 0 for some γ ∈ R (see [2,
Theorem 3.16]). The above ranges for p are sharp.

Acknowledgements. Y.C.K. was supported by the Korea Basic Science Research
Foundation, under grant no. DP0022. T.S. was partly supported by the Ministry of
Education, Grant-in-Aid for Encouragement of Young Scientists, 9740056 and 14740100.

References

1. A. Aleman and A. G. Siskakis, An integral operator on Hp, Complex Variables Theory
Applic. 28 (1995), 149–158.

2. P. L. Duren, Theory of Hp spaces (Academic, 1970).
3. P. L. Duren, Univalent functions (Springer, 1983).
4. W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann.

Polon. Math. 23 (1973), 159–177.
5. W. Janowski, Some extremal problems for certain families of analytic functions, II, Bull.

Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 17–25.
6. Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally uni-

valent functions on the unit disk, Rocky Mt. J. Math. 32 (2002), 179–200.

https://doi.org/10.1017/S0013091504000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000306


Norm estimates of pre-Schwarzian derivatives 143

7. Y. C. Kim and T. Sugawa, A conformal invariant for non-vanishing analytic functions
and its applications, Michigan Math. J., in press.

8. Y. C. Kim, J. H. Choi and T. Sugawa, Coefficient bounds and convolution properties
for certain classes of close-to-convex functions, Proc. Jpn Acad. A76 (2000), 95–98.

9. W. Ma and D. Minda, A unified treatment of some special classes of univalent functions,
in Proc. Conf. on Complex Analysis, Tianjin, 1992 (ed. Z. Li, F. Ren, L. Yang and
S. Zhang), pp. 157–169 (International Press, Cambridge, MA, 1992).

10. Y. Okuyama, The norm estimates of pre-Schwarzian derivatives of spiral-like functions,
Complex Variables Theory Applic. 42 (2000), 225–239.

11. H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex
functions, Can. J. Math. 37 (1985), 48–61.

12. T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37
(1970), 775–777.

13. T. Sugawa, Holomorphic motions and quasiconformal extensions, Ann. Univ. Mariae
Curie-Sk�lodowska A53 (1999), 239–252.

14. S. Yamashita, Gelfer functions, integral means, bounded mean oscillation, and univa-
lency, Trans. Am. Math. Soc. 321 (1990), 245–259.

15. S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido
Math. J. 28 (1999), 217–230.

16. I. V. Zhuravlev, Model of the universal Teichmüller space, Sb. Math. J. 27 (1986),
691–697.

https://doi.org/10.1017/S0013091504000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000306

