Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T08:40:56.721Z Has data issue: false hasContentIssue false

4 - Adult Neurogenesis

Published online by Cambridge University Press:  17 July 2009

Gerd Kempermann
Affiliation:
MD, Head of Neuronal Stem Cells Research Group Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
Paul B. Baltes
Affiliation:
Max-Planck-Institut für Bildungsforschung, Berlin
Patricia A. Reuter-Lorenz
Affiliation:
University of Michigan, Ann Arbor
Frank Rösler
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

ABSTRACT

Contrary to widely held belief, a small number of new neurons are generated in the adult brain and even in the aging brain. Although this adult neurogenesis is minute compared with the vast number of neurons in our brains, and although adult neurogenesis does not lead to substantial regeneration in cases of neuronal loss, the new neurons may serve an important function in learning and memory processes. Adult neurogenesis is neuronal development in nucleo and is controlled by genetic and environmental factors. It exemplifies that, throughout life, brain development is activity and experience dependent, and, more important, that it never ends.

INTRODUCTION

“Adult neurogenesis” is the generation of new nerve cells in the adult brain (Fig. 4.1), a process that was long believed to be impossible, although it occurs in both nonhuman primates (Gould et al., 1999) and humans (Eriksson et al., 1998). Today, adult neurogenesis has become a prime topic in biomedical research because of its implications for the treatment of neurodegenerative disorders and essentially all diseases that involve a loss of nerve cells (neurons). Because it is the stem cells residing in the adult brain from which new neurons originate in adult neurogenesis, many researchers believe that we might learn from adult neurogenesis how to “grow” stem cells into new neurons for transplantation – in cases of Parkinson's disease, for example (Bjorklund & Lindvall, 2000).

Type
Chapter
Information
Lifespan Development and the Brain
The Perspective of Biocultural Co-Constructivism
, pp. 82 - 108
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. Journal of Comparative Neurology, 137(4), 433–457CrossRef
Altman, J., & Das, G. D. (1965). Autoradiographic and histologic evidence of postnatal neurogenesis in rats. Journal of Comparative Neurology, 124, 319–335CrossRefGoogle Scholar
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8 (9), 963–970CrossRefGoogle ScholarPubMed
Barnea, A., & Nottebohm, F. (1994). Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proceedings of the National Academy of Sciences (USA), 91, 11217–11221CrossRefGoogle ScholarPubMed
Bernhard, T. (1971). Gehen. Frankfurt: Suhrkamp. (in English: Three Novellas: Amras, Playing Watten, Walking, P. Janse, K. Northcott, & B. Evenson, Trans. Chicago:University of Chicago Press, 2003. Available: http://www.conjunctions.com/archives/c31-tb.htm)Google Scholar
Bjorklund, A., & Lindvall, O. (2000). Cell replacement therapies for central nervous system disorders. Nature Neuroscience, 3 (6), 537–544CrossRefGoogle ScholarPubMed
Boss, B. D., Peterson, G. M., & Cowan, W. M. (1985). On the number of neurons in the dentate gyrus of the rat. Brain Research, 338 (1), 144–150CrossRefGoogle ScholarPubMed
Cameron, H. A., & Gould, E. (1994). Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience, 61 (2), 203–209CrossRefGoogle ScholarPubMed
Cameron, H. A., & McKay, R. D. (1999). Restoring production of hippocampal neurons in old age. Nature Neuroscience, 2 (10), 894–897CrossRefGoogle ScholarPubMed
Cameron, H. A., Woolley, C. S., McEwen, B. S., & Gould, E. (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56 (2), 337–344CrossRefGoogle ScholarPubMed
Churchill, J. D., Galvez, R., Colcombe, S., Swain, R. A., Kramer, A. F., & Greenough, W. T. (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23 (5), 941–955CrossRefGoogle ScholarPubMed
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of National Academy of Sciences (USA), 101, 3316–3321CrossRefGoogle ScholarPubMed
Cotman, C. W. (1985). Synaptic plasticity. New York: GuilfordGoogle Scholar
Crespo, D., Stanfield, B. B., & Cowan, W. M. (1986). Evidence that late-generated granule cells do not simply replace earlier formed neurons in the rat dentate gyrus. Experimental Brain Research, 62 (3), 541–548CrossRefGoogle Scholar
D'Sa, C., & Duman, R. S. (2002). Antidepressants and neuroplasticity. Bipolar Disorders, 4 (3), 183–194CrossRefGoogle ScholarPubMed
Day, M., Langston, R., & Morris, R. G. (2003). Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature, 424 (6945), 205–209CrossRefGoogle ScholarPubMed
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427 (6972), 311–312CrossRefGoogle Scholar
Ehninger, D., & Kempermann, G. (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cerebral Cortex, 13 (8), 845–851CrossRefGoogle ScholarPubMed
Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A.. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317CrossRefGoogle ScholarPubMed
Gage, F. H. (2000). Mammalian neural stem cells. Science, 287 (5457), 1433–1438CrossRefGoogle ScholarPubMed
Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences (USA), 80, 2390–2394CrossRefGoogle Scholar
Gould, E., Reeves, A. J., Fallah, M., Tanapat, P., Gross, C. G., & Fuchs, E. (1999). Hippocampal neurogenesis in adult old world primates. Proceedings of the National Academy of Sciences (USA), 96, 5263–5267CrossRefGoogle ScholarPubMed
Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In M. R. Gunnar & C. A. Nelson (Eds.), Developmental behavioral neuroscience (Minnesota Symposia on Child Psychology, Vol. 24, pp. 155–200). Hillsdale, NJ: ErlbaumGoogle Scholar
Hebb, D. O. (1947). The effects of early experience on problem-solving at maturity. American Psychologist, 2, 306–307Google Scholar
, D. O. (1949). The organization of behavior.New York: WileyGoogle Scholar
Jacobs, B. L., Praag, H., & Gage, F. H. (2000). Adult brain neurogenesis and psychiatry: A novel theory of depression. Molecular Psychiatry, 5 (3), 262–269CrossRefGoogle Scholar
Kaplan, M. S., & Hinds, J. W. (1977). Neurogenesis in the adult rat: Electron microscopic analysis of light radioautographs. Science, 197 (4308), 1092–1094CrossRefGoogle ScholarPubMed
Kempermann, G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. Journal of Neuroscience, 22 (3), 635–638CrossRefGoogle ScholarPubMed
Kempermann, G., Brandon, E. P., & Gage, F. H. (1998). Environmental stimulation of 129/SvJ mice results in increased cell proliferation and neurogenesis in the adult dentate gyrus. Current Biology, 8, 939–942CrossRefGoogle ScholarPubMed
Kempermann, G., & Gage, F. H. (2002). Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance in the water maze task. European Journal of Neuroscience, 16, 129–136CrossRefGoogle Scholar
Kempermann, G., Gast, D., & Gage, F. H. (2002). Neuroplasticity in old age: Sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Annals of Neurology, 52 (2), 135–143CrossRefGoogle ScholarPubMed
Kempermann, G., & Kronenberg, G. (2003). Depressed new neurons? Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biological Psychiatry, 54, 499–503CrossRefGoogle Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997a). Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proceedings of the National Academy of Sciences (USA), 94, 10409–10414CrossRefGoogle Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997b). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495CrossRefGoogle Scholar
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. Journal of Neuroscience, 18 (9), 3206–3212CrossRefGoogle ScholarPubMed
Kempermann, G., & Wiskott, L. (2004). What is the functional role of new neurons in the adult dentate gyrus? In F. H. Gage, A. Björklund, A. Prochiantz, & Y. Christen (Eds.), Stem cells in the nervous system: Functional and clinical implications (pp. 57–65). Berlin:SpringerGoogle Scholar
Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. Journal of Neuroscience, 16 (6), 2027–2033CrossRefGoogle ScholarPubMed
Magavi, S., Leavitt, B., & Macklis, J. (2000). Induction of neurogenesis in the neocortex of adult mice. Nature, 405, 951–955CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences (USA), 97, 4398–4403CrossRefGoogle ScholarPubMed
Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19 (19), 8487–8497CrossRefGoogle ScholarPubMed
Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255 (5052), 1707–1710CrossRefGoogle ScholarPubMed
Rosenzweig, M. R., & Bennett, E. L. (1996). Psychobiology of plasticity: Effects of training and experience on brain and behavior. Behavioral Brain Research, 78 (1), 57–65CrossRefGoogle ScholarPubMed
Sanai, N., Tramontin, A. D., Quinones-Hinojosa, A., Barbaro, N. M., Gupta, N., Kunwar, S., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427 (6976), 740–744CrossRefGoogle ScholarPubMed
Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301 (5634), 805–809CrossRefGoogle ScholarPubMed
Stanfield, B. B., & Trice, J. E. (1988). Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Experimental Brain Research, 72 (2), 399–406CrossRefGoogle ScholarPubMed
Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2 (3), 266–270CrossRefGoogle ScholarPubMed
Weissman, I. L., Anderson, D. J., & Gage, F. (2001). Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations. Annual Review of Cell and Developmental Biology, 17, 387–403CrossRefGoogle ScholarPubMed
Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A.. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA, 287 (6), 742–748CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Adult Neurogenesis
    • By Gerd Kempermann, MD, Head of Neuronal Stem Cells Research Group Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
  • Edited by Paul B. Baltes, Max-Planck-Institut für Bildungsforschung, Berlin, Patricia A. Reuter-Lorenz, University of Michigan, Ann Arbor, Frank Rösler, Philipps-Universität Marburg, Germany
  • Book: Lifespan Development and the Brain
  • Online publication: 17 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511499722.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Adult Neurogenesis
    • By Gerd Kempermann, MD, Head of Neuronal Stem Cells Research Group Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
  • Edited by Paul B. Baltes, Max-Planck-Institut für Bildungsforschung, Berlin, Patricia A. Reuter-Lorenz, University of Michigan, Ann Arbor, Frank Rösler, Philipps-Universität Marburg, Germany
  • Book: Lifespan Development and the Brain
  • Online publication: 17 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511499722.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Adult Neurogenesis
    • By Gerd Kempermann, MD, Head of Neuronal Stem Cells Research Group Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany
  • Edited by Paul B. Baltes, Max-Planck-Institut für Bildungsforschung, Berlin, Patricia A. Reuter-Lorenz, University of Michigan, Ann Arbor, Frank Rösler, Philipps-Universität Marburg, Germany
  • Book: Lifespan Development and the Brain
  • Online publication: 17 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511499722.006
Available formats
×