Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T06:40:53.305Z Has data issue: false hasContentIssue false

Mineralogy and Geochemistry of the Host-Rock Alterations Associated with the Shea Creek Unconformity-Type Uranium Deposits (Athabasca Basin, Saskatchewan, Canada). Part 1. Spatial Variation of Illite Properties

Published online by Cambridge University Press:  01 January 2024

Emmanuel Laverret
Affiliation:
HydrASA, UMR CNRS 6532, University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Patricia Patrier Mas*
Affiliation:
HydrASA, UMR CNRS 6532, University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
HydrASA, UMR CNRS 6532, University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Philippe Kister
Affiliation:
UMR CNRS 7566 G2R-CREGU, UHP, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France
David Quirt
Affiliation:
Saskatchewan Research Council, 15 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 2X8, Canada
Patrice Bruneton
Affiliation:
COGEMA, Business Unit Mines, 2, rue Paul Dautier, BP 4, 78141 Velizy Cedex, France
Norbert Clauer
Affiliation:
Centre de Géochimie de la Surface, 1 Rue Blessig, 67084 Strasbourg Cedex, France
*
*E-mail address of corresponding author: patricia.patrier@hydrasa.univ-poitiers.fr

Abstract

Unconformity-related uranium deposits, which represent a significant high-grade uranium resource, are systematically surrounded by a host-rock alteration halo enriched in clay minerals. Illite is often the major clay mineral component of the halo and it displays a variable crystal structure. New data are provided on the crystal structure and the chemistry of illite encountered within and outside of the alteration halo surrounding the Shea Creek deposit. Two illite populations were distinguished using textural and structural criteria: samples rich in the tv-1M polytype display thin (sub-micrometer) and ‘hairy’ shapes, while samples richer in the cv-1M polytype contain illites with rigid lath-like shapes several micrometers wide. In barren ‘regional’ sandstone, the trends with depth of the textural and microstructural properties of illite particles are: (1) an increase of particle size, (2) an evolution to a more isometric form, and (3) a dominance of the cv-1M polytype over the tv-1M polytype. These trends record diagenetic processes under conditions of deep burial and differ from those observed in altered sandstone around the uranium mineralization. The altered sandstone is characterized by enrichment in the tv-1M polytype near the unconformity and/or brittle structural features. This tv-1M illitization took place in response to structurally-controlled infiltration of basement rocks by diagenetic brines which were further recycled after interaction into the overlying basin. Variations of the illite structural and textural properties may result from nucleation/growth kinetics and may be indicative of a change in the flow regime, and/or a change of saturation state of the fluid vs. illite. The tv-1M illite may be favored in environments characterized by a high fluid/rock ratio and a high supersaturation state of the fluids in proximity to mineralization.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structure of layer silicates Crystal Structure of Clay Minerals and their X-ray Identification London Mineralogical Society 1124.Google Scholar
Beaufort, D. Cassagnabère, A. Petit, S. Lanson, B. Berger, G. Lacharpagne, J.C. and Johansen, H., (1998) Kaolinite to dickite reaction in sandstone reservoirs Clay Minerals 33 297316 10.1180/000985598545499.CrossRefGoogle Scholar
Beaufort, D. Patrier, P. Laverret, E. Bruneton, P. and Mondy, J., (2005) Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers Uranium Field (Northern Territory, Australia) Economic Geology 100 515536 10.2113/gsecongeo.100.3.515.CrossRefGoogle Scholar
Berger, G. Lacharpagne, J.C. Velde, B. Beaufort, D. and Lanson, B., (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences Applied Geochemistry 12 2335 10.1016/S0883-2927(96)00051-0.CrossRefGoogle Scholar
Bjorlykke, K. and Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 6580 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. and Pittman, E.D., editors). Special Publication, Society for Sedimentary Geology.CrossRefGoogle Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., (1980) Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125196.CrossRefGoogle Scholar
Brouand, M. and Cuney, M., (2002) Age and nature of the plutonism of the western part of the Athabasca basin basement (northern Saskatchewan, Canada) GAC-MAC joint annual meeting 27 14 Saskatoon, Canada, Abstract.Google Scholar
Brouand, M. Cuney, M. Deloule, E. and Cuney, M., (2003) Eastern extension of the Taltson orgenic belt and eastern provenance of Athabasca sandstone: IMS 1270 ion microprobe U/Pb dating of zircon from concealed basement plutonic rocks and from overlying sandstone (Canada) Uranium Geochemistry Nancy International Conference Proceedings 9194.Google Scholar
Card, C.D., (2002) Basement rocks to the Western Athabasca basin GAC-MAC Joint Annual Meeting 27 17 Saskatoon, Abstracts volume.Google Scholar
Champion, D., (1989) Etude des mécanismes de transformation des interstratifiés illite-smectite au cours de la diagenèse France Université d’Orsay — Paris XI 204 pp.Google Scholar
Chiarenzelli, J. Aspler, L. Villeneuve, M. and Lewry, J., (1998) Early Proterozoic evolution of the Saskatchewan Craton and its allochthonous cover, Trans-Hudson Orogen The Journal of Geology 106 247267 10.1086/516020.CrossRefGoogle Scholar
Clauer, N. and Chaudhuri, S., (1995) Clays in Crustal Environments. Isotope Tracing and Dating Berlin Springer-Verlag 10.1007/978-3-642-79085-0 358 pp.CrossRefGoogle Scholar
Cumming, G.L. Krstic, D. and Wilson, J.A., (1987) Age of the Athabasca Group, Northern Alberta GAC-MAC Joint Annual Meeting 12 35 Saskatoon 1987, Abstracts.Google Scholar
Cuney, M. Brouand, M. Cathelineau, M. Derome, D. Freiberger, R. Hecht, L. Kister, P. Lobaev, V. Lorilleux, G. Peiffert, C. Bastoul, A.M. and Cuney, M., (2003) What parameters control the high grade-large tonnage of the Proterozoic unconformity related uranium deposits? Uranium Geochemistry Nancy International Conference Proceedings 123126.Google Scholar
Derome, D. Cathelineau, M. Cuney, M. Fabre, C. and Cuney, M., (2003) Reconstruction of P, T, X characteristics of paleofluids in the McArthur River unconformity-type uranium deposit (Saskatchewan, Canada) Uranium Geochemistry Nancy, France International Conference Proceedings 141144.Google Scholar
Drits, V.A. and McCarty, D.K., (1996) The nature of diffraction effects from illite and illite-smectite consisting of inter-stratified trans-vacant and cis-vacant 2:1 layers: A semiquantitative technique for determination of layer-type American Mineralogist 81 852863 10.2138/am-1996-7-808.CrossRefGoogle Scholar
Drits, V.A. Weber, F. Salyn, A.L. and Tsipursky, S.I., (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada Clays and Clay Minerals 41 389398 10.1346/CCMN.1993.0410316.CrossRefGoogle Scholar
Ehrenberg, S.N. Aagaard, P. Wilson, M.J. Fraser, A.R. and Duthie, D.M.L., (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of Norwegian continental shelf Clay Minerals 28 325352 10.1180/claymin.1993.028.3.01.CrossRefGoogle Scholar
Ey, F., Gauthier-Lafaye, F., Lillié, F. and Weber, F. (1985) A uranium unconformity deposit: The geological setting of the Dorebody (Saskatchewan-Canada). Pp. 121128 in: The Carswell Structure Uranium Deposits, Saskatchewan (Lainé, R., Alonso, D., and Svab, M., editors). Geological Association of Canada Special Paper, 29.Google Scholar
Frey, M. and Robinson, D., (1999) Low-Temperature Metamorphism Oxford, UK Blackwell Science 313 pp.Google Scholar
Gustafson, L.B. and Curtis, L.W., (1983) Post-Kombolgie metasomatism at Jabiluka, Northern Territory, Australia, and its significance in the formation of high grade uranium mineralization in lower Proterozoic rocks Economic Geology 35 2656 10.2113/gsecongeo.78.1.26.CrossRefGoogle Scholar
Güven, N., (2001) Mica structure and fibrous growth of illite Clays and Clay Minerals 49 189196 10.1346/CCMN.2001.0490301.CrossRefGoogle Scholar
Güven, N. Hower, W.F. and Davies, D.K., (1980) Nature of authigenic illites in sandstone reservoirs Journal of Sedimentary Petrology 50 761766.Google Scholar
Halter, G., (1988) Zonalité des altérations dans l’environnement des gisements d’uranium associés à la discordance du Proterozoïque moyen (Saskatchewan, Canada) France Université de Strasbourg 253 pp.Google Scholar
Hoeve, J. and Quirt, D. (1984) Uranium mineralization and host rock alteration in relation to clay mineral diagenesis and evolution of the middle-Proterozoic Athabasca Basin, Northern Saskatchewan, Canada. Saskatchewan Research Council, Canada, Report 187, 187 pp.Google Scholar
Hoeve, J. and Quirt, D., (1987) A stationary redox front as a critical factor in the formation of high grade unconformity-type uranium ores in the Athabasca basin, Saskatchewan, Canada Bulletin de Minéralogie 110 157171.CrossRefGoogle Scholar
Hoeve, J. and Sibbald, T.I.I., (1978) On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada Economic Geology 73 14501473 10.2113/gsecongeo.73.8.1450.CrossRefGoogle Scholar
Hoeve, J., Quirt, D. and Alonso, D. (1985) Clay mineral stratigraphy of the Athabasca Group: Correlation inside and outside the Carswell Structure. Pp. 1931 in: The Carswell Structure Uranium Deposits, Saskatchewan (Lainé, R., Alonso, D. and Svab, M., editors). Geological Association of Canada Special Paper 29.Google Scholar
Ji, J.F. and Browne, P.R.L., (2000) Relationship between illite crystallinity and temperature in active geothermal systems of New Zealand Clay and Clay Minerals 48 139144 10.1346/CCMN.2000.0480117.CrossRefGoogle Scholar
Kister, P. Laverret, E. Quirt, D. Cuney, M. Patrier Mas, P. Beaufort, D. and Bruneton, D., (2006) Mineralogy and geochemistry of the host-rock alterations associated with the Shea Creek unconformity-type uranium deposits (Saskatchewan, Canada). Part 2. Regional scale spatial distribution of the Athabasca Group sandstone matrix minerals Clays and Clay Minerals 54 295313 10.1346/CCMN.2006.0540302.CrossRefGoogle Scholar
Komninou, A. and Sverjensky, D.A., (1996) Geochemical modeling of the formation of an unconformity-type uranium deposit Economic Geology 91 590606 10.2113/gsecongeo.91.3.590.CrossRefGoogle Scholar
Kotzer, T.G. and Kyser, T.K., (1995) Petrogenesis of the Proterozoic Athabasca basin, Northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology Chemical Geology 120 4589 10.1016/0009-2541(94)00114-N.CrossRefGoogle Scholar
Kübler, B., (1964) Les argiles, indicateur de métamorphisme Revue de l’Institut Français du Pétrole 19 10931112.Google Scholar
Lanson, B., (1997) Decomposition of X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Lanson, B. Beaufort, D. Berger, G. Baradat, J. and Lacharpagne, J.C., (1996) Illitization of diagenetic kaolinite-to-dickite conversion series: late stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, off-shore of The Netherlands Journal of Sedimentary Research 66 501518.Google Scholar
Lanson, B. Beaufort, D. Berger, G. Bauer, A. Cassagnabère, A. and Meunier, A., (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review Clay Minerals 37 122 10.1180/0009855023710014.CrossRefGoogle Scholar
Laverret, E., (2002) Evolutions spatiales et temporelles des altérations argileuses des gisements d’uranium associés à des discordances Protérozoïques Partie Ouest du bassin de l’Athabasca, Canada France Université de Poitiers 192 pp.Google Scholar
Laverret, E. Patrier, P. Beaufort, D. Clauer, N. Bruneton, P. Mondy, J. and Cuney, M., (2003) Time-space evolution of alterations in the unconformity-type uranium deposit of the Shea Creek prospect (Athabasca Basin, Canada) Uranium Geochemistry Nancy International Conference Proceedings 211214.Google Scholar
Liewig, N. Clauer, N. and Sommer, F., (1987) Rb-Sr and K-Ar dating of clay diagenesis in Jurassic sandstone oil reservoirs, North Sea American Association of Petroleum Geologists Bulletin 71 14671474.Google Scholar
Lorilleux, G. Jebrak, M. Cuney, M. and Baudemont, D., (2002) Polyphase hydrothermal breccias associated with unconformity-type uranium mineralization (Canada): from fractal analysis to structural significance Journal of Structural Geology 24 323338 10.1016/S0191-8141(01)00068-2.CrossRefGoogle Scholar
Mas, A. Patrier, P. Beaufort, D. and Genter, A., (2003) Clay-mineral signatures of fossil and active hydrothermal circulations in the geothermal system of Lamentin Plain, Martinique Journal of Volcanology and Geothermal Research 124 195218 10.1016/S0377-0273(03)00044-1.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C., Moore, D.M. and Reynolds, R.C., (1989) Identification of mixed layered minerals X-ray Diffraction and the Identification and Analyses of Clay Minerals UK Oxford University Press 241269.Google Scholar
Pagel, M., (1975) Détermination des conditions physicochimiques de la silicification diagénétique des grès Athabasca (Canada) au moyen des inclusions fluides Compte rendus de l’Académie des Sciences 280D 23012304.Google Scholar
Pagel, M. and Svab, M. (1985) Petrographic and geochemical variations within the Carswell structure metamorphic core and their implications with respect to uranium mineralization. Pp. 5570 in: The Carswell Structure Uranium Deposits, Saskatchewan (Lainé, R., Alonso, D. and Svab, M., editors). Special Paper 29, Geological Association of Canada.Google Scholar
Papanagiotou, P., Patrier, P., Beaufort, D., Fouillac, A.M. and Rojas, J. (1995) Occurrence of smectite and smectite-rich mixed-layers at high temperature within reservoirs of active geothermal fields. Proceedings of the World Geothermal Congress, Florence, Italy, pp. 10711076.Google Scholar
Patrier, P. Papapanagiotou, P. Beaufort, D. Traineau, H. Bril, H. and Rojas, J., (1996) Role of permeability versus temperature in the distribution of the fine (<0.2 µm) clay fraction in the Chipilapa geothermal system (El Savador, Central America) Journal of Volcanology and Geothermal Research 72 101120 10.1016/0377-0273(95)00078-X.CrossRefGoogle Scholar
Patrier, P. Beaufort, D. Laverret, E. and Bruneton, P., (2003) Dickite and 2M 1 illite in deeply buried sandstones from the middle Proterozoic Kombolgie Formation (Northern Territory, Australia) Clays and Clay Minerals 51 102116 10.1346/CCMN.2003.510112.CrossRefGoogle Scholar
Quirt, D.H. (1997) Geochemistry, host-rock alteration, mineralization, and uranium metallogenesis of the Wollaston EAGLE project area. In: Thermotectonic and Uranium Metallogenetic Evolution of the Wollaston EAGLE Project Area (Annesley, I.R., Madore, C., Shi, R. and Quirt, D.H., editors). Saskatchewan Research Council, Publication No. R-1240-2-C-97, Part 2, 98 pp.Google Scholar
Quirt, D.H. and Cuney, M., (2003) Athabasca unconformity-type uraniuim deposits: one deposit type with many variations Uranium Geochemistry Nancy, France International Conference Proceedings 309312.Google Scholar
Raffensperger, J.P. and Garven, G., (1995) The formation of unconformity-type uranium ore deposits 2. Coupled hydro-chemical modelling American Journal of Science 295 639696 10.2475/ajs.295.6.639.CrossRefGoogle Scholar
Rainbird, R.H. Stern, R.A. and Jefferson, C.W., (2002) Summary of detrital zircon geochronology of the Athabasca Group, Northern Saskatchewan and Alberta Summary of Investigations, Saskatchewan Geological Survey, Saskatchewan Energy Mines 2 D17 3 pp.Google Scholar
Ramaekers, P. (1990) Geology of the Athabasca Group (Helikian) in Northern Saskatchewan. Saskatchewan Energy and Mines, Saskatchewan Geological Survey, Technical report 195, 49 pp.Google Scholar
Ramaekers, P. Yeo, G. and Jefferson, C., (2001) Preliminary overview of regional stratigraphy in the Late Paleoproterozoic Athabasca Basin, Saskatchewan and Alberta Summary of Investigations. Saskatchewan Geological Survey, Saskatchewan Energy Mines 2 240251.Google Scholar
Renac, C. Kyser, T.K. Durocher, K. Dreaver, G. and O’Connor, T., (2002) Comparison of diagenetic fluids in the Proterozoic Thelon and Athabasca basins, Canada: implications for a long protracted fluid history in stable intracratonic basins Canadian Journal of Earth Sciences 39 113132 10.1139/e01-077.CrossRefGoogle Scholar
Reynolds, R.C., (1985) Description of program NEWMOD for the calculation of the one-dimensional X-ray diffraction patterns of mixed-layered clays Hanover, New Hampshire Department of Earth Sciences, Dartmouth College 23 pp.Google Scholar
Reynolds, R.C., Reynolds, R.C. and Walker, J.R., (1993) Three-dimensional X-ray powder diffraction from disordered illite: simulation and interpretation of the diffraction patterns Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals Boulder, Colorado The Clay Minerals Society 4478.Google Scholar
Rippert, J.C., Koning, E., Robbins, J., Koch, R. and Baudemont, D. (2000) The Shea Creek uranium project, West Athabasca basin, Saskatchewan, Canada. In: Proceedings, GeoCanada2000, the Millenium Geoscience Summit, Calgary. GAC-MAC joint annual meeting, abstract 570.Google Scholar
Środoń, J. Eberl, D.D. and Bailey, S.W., (1984) Illite Micas Washington, D.C Mineralogical Society of America 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar